Интернет Windows Android

Разъемы мониторов (VGA, DVI, HDMI, Display Port). Какой кабель и переходник нужен для подключения монитора к ноутбуку или ПК

Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.

С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.

Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.

Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.

Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.

Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.

Более совершенным вариантом композитного сигнала является сигнал S‑Video . Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.

Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.

Компонентные видеосигналы

Для достижения максимального качества изображения и создания видеоэффектов в профессиональном оборудовании видеосигнал разделяется на несколько каналов. Например, в системе RGB видеосигнал делится на красный, синий и зеленый компоненты, а также сигнал синхронизации. Такой сигнал еще называют сигналом RGBS, наибольшее распространение он получил в Европе.


В зависимости от способа передачи сигналов синхронизации сигнал RGB имеет несколько разновидностей. Если синхроимпульсы передаются в канале зеленого цвета, то сигнал называют RGsB, а если сигнал синхронизации передается во всех цветовых каналах, то RsGsBs.


Для подключения сигнала RGBS используют кабели с четырьмя разъемами BNC или разъем SCART.


Кабель для видеосигнала RGBS с разъемами BNC.


Разъем SCART

Таблица 1. Назначение контактов разъема SCART

Контакт Описание
1. Выход аудио, правый
2. Вход аудио, правый
3. Выход аудио, левый + моно
4. Земля для аудио
5. Земля для RGB Blue
6. Вход аудио, левый + моно
7. Вход RGB Blue (синий)
8. Вход, переключение режима телевизора, в зависимости от типа телевизора – Audio/RGB/16:9, иногда включение AUX (старые телевизоры)
9. Земля для RGB Green
10. Data 2: Clockpulse Out, только в старых видеомагнитофонах
11. Вход RGB Green (зеленый)
12. Data 1 Выход данных
13. Земля для RGB Red
14. Земля для Data, дистанционное управление, только в старых видеомагнитофонах
15. Вход RGB Red (красный) или вход канала С
16. Вход Blanking Signal, переключение режима телевизора (композит/RGB), «быстрый» сигнал (новые телевизоры)
17. Земля композитного видео
18 Земля Blanking Signal (для контактов 8 или 16)
19. Выход композитного видео
20. Вход композитного видео или канал Y (яркости)
21. Защитный экран (корпус)

В системе YUV, получившей распространение в США, используют другой набор компонентов: смешанный сигналы яркости и синхронизации, а также красный и синий цветоразностные сигналы. Для каждой компонентной системы требуется свой тип оборудования, каждая обладает своими достоинствами и недостатками. Для объединения устройств различных видеоформатов необходимы специальные интерфейсные блоки. Разъёмы на концах кабелей обычно бывают RCA или BNC.


Компонентый сигнал YUV


Компонентый сигнал формата RGBHV

Путь формирования видеосигнала таков: изображение раскладывается на сигналы трех первичных цветов: красного (Red – R), зеленого (Green – G) и синего (Blue – В) – отсюда и название «RGB», к которым добавляются сигналы горизонтальной и вертикальной синхронизации (HV), а затем превращается в RGB-сигнал с синхроимпульсами в канале зеленого (RGsB), который далее преобразуется в: компонентный (цветоразностный) сигнал YUV, где Y=0,299R+0,5876G+0,114В; U=R–Y; V= В–Y, преобразуемый затем в сигнал S-Video и композитный видеосигнал. Композитный видеосигнал преобразуется в радиочастотный сигнал, сочетающий аудио- и видеосигналы. Затем он модулируется несущей частотой и превращается в эфирный телесигнал.

На приемной стороне радиочастотный сигнал в результате демодуляции преобразуется в композитный видеосигнал, из которого в свою очередь в результате ряда преобразований получают компоненты RGB и HV.

Компонентный сигнал YPbPr преобразуется в RGB + HV в обход многих цепей видеотракта. Разделение цветоразностных сигналов Pb и Pr по отдельным каналам существенно повышает точность передачи фазы цветовой поднесущей, а настройка цветового тона не требуется.

Сигналы телевидения высокой четкости (ТВЧ, HDTV) 720p и 1080i всегда передаются в компонентном формате, ТВЧ в композитном или s-video форматах не существует.

Когда зарождался формат DVD, было решено, что при оцифровке материала для записи на DVD именно компонентный сигнал будет переводиться в цифровой вид, а затем обрабатываться по алгоритму MPEG-2 сжатия видеоданнных. Сигнал RGB на выходе DVD-плеера получается из компонентного сигнала YUV.

Важно отметить различие между соотношением цветовых компонент в RGB и компонентном сигнале формата YUV (YPbPr). В цветовом пространстве RGB относительное содержание (вес) каждой цветовой компоненты одинаково, тогда как в YPbPr оно учитывает спектральную чувствительность человеческого глаза.


Соотношение компонент в цветовом пространстве RGB

Соотношение компонент в цветовом пространстве YPbPr

Ограничения по расстоянию передачи компонентных разновидностей видеосигнала от источников сигнала к приемникам сведены в таблицу 2 (для сравнения приведены и некоторые цифровые интерфейсы).

Тип сигнала Полоса пропускания, МГц Тип кабеля Расстояние, м
UXGA (компонентный)
HDTV/1080i (компонентный)
170
70
Коаксиальный 75 Ом 5
5-30
Компонентный UXGA (с усилением) 170 Коаксиальный 75 Ом 50-70
Стандарт (цифровой SDI)
HDTV (цифровой SDI)
270
1300
Коаксиальный 75 Ом 50-300
50-80
DVI-D 1500 Витая пара 5
DVI-D (с усилением) 1500 Витая пара 10
IEEE 1394 (Firewire) 400(800) Витая пара 10

Видеосигналы VGA

Одна из широко распространенных разновидностей компонентного сигнала – формат VGA.

Формат VGA (Video Graphics Array) – это формат видеосигналов, разработанный для вывода на компьютерные мониторы.

По разрешающей способности форматы VGA принято классифицировать в соответствии с разрешением видеокарт персональных компьютеров, формирующих соответствующие видеосигналы:

  • VGA (640х480);
  • SVGA (800х600);
  • XGA (1024х780);
  • SXGA (1280х1024);
  • UXGA (1600x1200).

В каждой паре чисел первое показывает число пикселей по горизонтали, а второе – по вертикали изображения.

Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения стоимость видеокарт и устройств отображения возрастает.

Видеотехника развивается стремительно, и некоторые компьютерные форматы, такие как MDA, CGA и EGA ушли в прошлое. Например, формат CGA, считавшийся в течение нескольких лет самым распространенным, обеспечивал изображение с разрешением всего лишь 320х200 при четырех цветах!

Самый «слабый» из используемых в настоящее время видео форматов, VGA, появился в 1987 году. Количество градаций каждого цвета в нем увеличено до 64, в результате чего число возможных цветов составило 643=262144, что для компьютерной графики имеет даже более важное значение, чем разрешающая способность.

Назначение контактов разъема VGA приведено в таблице.

Контакт Сигнал Описание
1. RED Канал R (красный) (75 Ом, 0,7 В)
2. GREEN Канал G (зеленый) (75 Ом, 0,7 В)
3. BLUE Канал B (синий) (75 Ом, 0,7 В)
4. ID2 Идентификационный бит 2
5. GND Земля
6. RGND Земля канала R
7. GGND Земля канала G
8. BGND Земля канала B
9. KEY Нет контакта (ключ)
10. SGND Земля синхронизации
11. ID0
Идентификационный бит 0
12. ID1 or SDA
Идентификационный бит 1 или данные DDC
13. HSYNC or CSYNC
Строчная H или композитная синхронизация
14. VSYNC
Кадровая синхронизация V
15. ID3 or SCL Идентификационный бит 3 или такты DDC

Кроме собственно видеосигналов (R, G, B, H и V) в разъеме (по спецификации VESA) предусмотрены также некоторые дополнительные сигналы.

Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: бренд-нейм, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.

Таким образом, из таблицы видно, что если не использовать канал DDC, то сигнал формата VGA представляет собой, по сути дела, компонентный сигнал RGBHV.

В профессиональной аппаратуре вместо кабеля D-Sub с разъемом DB-15 обычно используют кабель с пятью разъемами BNC, что обеспечивает лучшие характеристики линии передачи. Такой кабель лучше согласован с приемником и передатчиком сигнала по импедансу, имеет меньшие перекрестные помехи между каналами, а следовательно лучше подходит для передачи видеосигнала с высоким разрешением (широким спектром сигнала) на большие расстояния.


Кабель VGA с разъемом DB-15


Кабель VGA с пятью разъемами BNC

В настоящее время наиболее широко используются устройства отображения с соотношением сторон 4:3: 800x600, 1024x768 и 1400x1050, однако существуют форматы с необычным соотношением сторон: 1152x970 (около 6:5) и 1280x1024 (5:4).

Распространение плоских панелей подталкивает рынок к более широкому использованию широкоэкранных дисплеев с соотношением сторон 16:9 с разрешением 852x480 (плазменные дисплеи), 1280x768 (жидкокристаллические дисплеи), 1366x768 и 920x1080 (плазменные и жидкокристаллические дисплеи).

Требуемая ширина полосы линии связи для передачи сигнала VGA или видеоусилителя определяется как результат произведения количества пикселей по горизонтали на количество строк по вертикали на частоту кадров. Полученный результат следует умножить на коэффициент запаса, равный 1,5.

Ш [Гц] = Гор * Верт * Кадр * 1,5

Частота строчной развертки есть произведение числа строк (или рядов пикселей) на частоту кадров.

Вид сигнала Занимаемый
спектр частот, МГц
Рекомендуемое макс.
расстояние передачи, м
Аналоговый видеосигнал NTSC 4,25 100 (кабель RG-6)
VGA (640x480, 60 Гц) 27,6 50
SVGA (800x600, 60 Гц) 43 30
XGA (1027x768, 60 Гц) 70 15
WXGA (1366x768, 60 Гц) 94 12
UXGA (1600x1200, 60 Гц) 173 5

Таким образом, сигнал UXGA требует полосу пропускания 173 МГц. Это огромная полоса: она простирается от звуковых частот до седьмого телевизионного канала!

Как удлинить компонентный сигнал

На практике часто возникает необходимость передать видеосигналы на расстояния большие, чем указано в вышеприведенных таблицах. Частичным решением проблемы является использование коаксиальных кабелей высокого качества, с малым омическим сопротивлением, хорошо согласованных с линией, имеющих малый уровень помех. Такие кабели довольно дороги и не дают полного решения проблемы.

Если устройство-приемник сигнала находится на значительном расстоянии, следует использовать специализированное оборудование – так называемые удлинители интерфейса. Устройства этого класса помогают устранить изначальное ограничение на длину линии связи между компьютером и элементами информационной сети. Удлинители сигналов VGA действуют на аппаратном уровне, поэтому они свободны от каких-либо проблем с совместимостью программного обеспечения, согласованием кодеков или преобразованием форматов.

Если рассматривать пассивную линию (т.е. линию без активного оконечного оборудования), то кабель типа RG-59 способен передать без видимых на экране искажений композитное видео, телевизионный сигнал стандартов PAL или NTSC только на 20-40 м (либо до 50-70 м по кабелю RG-11). Специализированные кабели, например Belden 8281 или Belden 1694A, позволят увеличить дальность передачи примерно на 50%.

Для сигналов VGA, Super-VGA или XGA, полученных с графических плат компьютеров, обычный кабель VGA обеспечивает передачу изображения с разрешением 640x480 на расстояние 5-7 м (а при разрешении 1024x768 и выше такой кабель не должен быть длиннее 3 м.). Высококачественные промышленные кабели VGA/XGA обеспечивают дальность до 10-15, редко до 30 м. Кроме того, линия связи будет подвержена потерям на высоких частотах (High frequency loss), которые проявляются в снижении яркости до полного исчезновения цвета, ухудшении разрешения и четкости.

Для устранения этой проблемы можно использовать линейный усилитель-корректор, включенный ПЕРЕД длинным кабелем. В нем используется схема компенсации потерь на высоких частотах, именуемая EQ (Cable Equalization, коррекция кабеля) или управление высокочастотной составляющей – HF (High Frequency) control. Схема EQ обеспечивает частотно-зависимое усиление сигнала для «спрямления» амплитудно-частотной характеристики (АЧХ). Регулятор общего усиления позволяет парировать обычные (омические) потери в кабеле.

Такие линейные усилители позволяют (при использовании кабелей максимального качества) передать сигнал с разрешением до 1600х1200 (60 Гц) на расстояния до 50-70 м (и больше, при меньших разрешениях).

Однако не всегда этого достаточно: иногда нужны большие расстояния, иногда на длинный кабель могут наводиться помехи, с которыми линейный усилитель бороться не может. В этом случае обычный коаксиальный кабель VGA можно заменить на иной, более подходящий носитель. Сегодня для этого чаще всего используют недорогой и удобный кабель витой пары, устанавливая на концах кабеля специальные преобразователи (передатчик и приемник).

Передающее устройство такого удлинителя преобразует видеосигналы в дифференциальный симметричный формат, наиболее подходящий для витых пар. На принимающей стороне восстанавливается стандартный видеоформат.

Используется обычный кабель для локальных сетей Ethernet, категории 5 и выше. Для видеосигналов лучше подходит неэкранированный кабель (UTP). За счет дешевизны такого кабеля весь тракт передачи сигнала обычно не удорожается, несмотря на необходимость установки дополнительных приборов.

Данный метод удлинения сигнала VGA хорошо работает на расстояниях до 300 м.

Аналогичные методы можно использовать и для удлинения компонентных сигналов других типов (YUV, RGBS, s-Video), промышленность выпускает соответствующие разновидности приборов.

Заметим, что для передачи компонентного видео YUV обычно хорошо подходят и приборы для сигнала VGA (и это оговаривается в их описаниях), если использовать их каналы R, G, B для передачи каналов Y, U и V (каналы синхронизации H и V можно не использовать). Обычно для этого достаточно использовать кабели-переходники для согласования типа разъемов.

Средой передачи в удлинителях могут также быть оптическое волокно и беспроводный радиоканал. По сравнению с витыми парами, оптоволокно значительно увеличит стоимость, а беспроводная связь не обеспечит достаточной помехозащищенности и надежности, да и получить разрешение на ее использование непросто.


Таблица 1 Обозначение выводов VGA разьёма

Вывод Имя Направление Описание
1 RED Красное видео (75 Ом, 0.7 В)
2 GREEN Зелёное видео (75 Ом, 0.7 В)
3 BLUE Синие видео (75 Ом, 0.7 В)
4 RES Зарезервировано
5 GND Земля
6 RGND Земля для красного
7 GGND Земля для зелёного
8 BGND Земля для синего
9 KEY - Не используется
10 SGND Земля для синхро сигналов
11 ID0 Не используется
12 SDA I 2 C двунаправленная передача данных
13 HSYNC or CSYNC Горизонтальная синхронизация
14 VSYNC Вертикальная синхронизация
15 SCL I 2 C синхро сигнал

Отбросим I2C и остаётся всего несколько выводов. Все земли можно соединить вместе, в итоге будет 3 цвета RGB, на эти выводы подаётся аналоговое напряжение от 0 до 0.7 В, чем больше напряжение на цветовом входе тем "насыщеннее" данный цвет. 0.7 В на всех 3 выводах дадут самый яркий белый цвет на который способен монитор. Таким образом можно получить практически любой цвет смешиванием 3-ёх составляющих. Для простоты я буду подавать на каждый из выводов либо 0 либо 0.7 В. Если хочется большого разнообразия цветов, нужно использовать преобразователи из цифрового кода в аналоговое напряжение ЦАП. Его можно составить самому с помощью резисторной матрицы . Либо достать специальную микросхему, к примеру: AD664

На выводах вертикальной и горизонтальной синхронизации действуют уровни ТТЛ сигналов.
- Уровень логического нуля, не более +0,8 В
- Уровень логической единицы, не менее +2,4 В
Вообщем они стабильно работают с МК при 3.3 В и 5 В.

При питании от 3.3 В (стандартное напряжение ПЛИС) (логическая 1 ≈ 3.3 В)
на цветовые входы сигнал подаётся через резисторы 270 Ом.
Как мы помним входное сопротивление цветовых VGA входов 75 Ом.
Рассчитаем максимальное напряжение:
3.3 * 75 / (75 + 270) = 0.717 В
Немного превышает, но работает без проблем.

При питании от 5 В, потребуется резисторы номиналом:
R = 3.3 * 75 / 0.7 - 75 = 460 ≈ 470 Ом

Остаётся узнать в какие моменты подавать единички и нолики на эти выводы.

Разрешение изображения и частота обновления определяется интервалами импульсов синхронизации. Во время синхроимпульсов на RGB выводах, должно быть 0 В.

Видео данные 1 строки - горизонтальный синхро импульс - видео данные 2-ой строки - горизонтальный синхро импульс - видео данные 3-ей строки - ********************* - рисуем последнюю строку - большой вертикальный синхроимпульс (вместе с горизонтальным) - Всё по новой.


Рассмотрим параметры для разрешения 640 x 480 @ 60 Гц

Таблица 2 частотные параметры VGA интерфейса


Таблица 3 временные параметры для горизонтальной линии


Таблица 3 временные параметры для 1 кадра


Не обязательно использовать точно такие же значения как в таблице, лишь бы они были достаточно близкими. Для данного разрешения используются отрицательные вертикальный и горизонтальный синхроимпульсы, для других разрешений это может не совпадать.

Можно заметить что частота вертикальной синхронизации иногда не совпадает с частотой обоновления экрана. LCD моинторы пришли на смену ЭЛТ мониторов, которые заменили большие телевизоры с электронно-лучевой трубкой. Когда появилась возможность выводить цветное изображение на экран у американских инженеров возникла проблема, тот стандарт частоты передачи звука который они выбрали "не согласуется" (вызывает помехи) с 60 Гц. Стандарт для частоты был 44.056 кГц. Но они выяснили что изменение частоты на 0.1 % позволит это исправить и т.к. стандарт передачи звука был уже общепринятым, они уменьшили частоту оновления экрана.
60 * 0.999 = 59.94
Т.к. многие значения были приняты ещё тогда, производели к ним привыкли и продолжают использовать, если сейчас изменить стандарт то придётся проделать слишком большую работу, не считая того что многие устройства могут просто перестать работать с новыми стандартами.
Подробней про это можно прочитать и
Я не знаю причину отличий другиих значений и почему нельзя было сделать временные интервалы кратные 10, 5 или хотя бы 2.

Из таблиц видно что есть время когда на экран ничего не выводится, это сделано для синхронизации, это можно представить будто наш рисующий луч (раньше изображение отобрадалось электронным лучём) уходит за границы экрана. Также нужно подождать несколько пустых линий, которые уходят под эвидимый экран.


Рис. 8 Экран с зонами синхронизации (Blanking Time)

Легче рассчитать и реализовать время 1 пикселя и затем всё подстраивать под него, иногда указывается просто частота пикселей и остальные значения в пикселях.

В принципе это всё что ннеобходимо знать чтобы рисовать на VGA мониторе, осталось запрограммировать (или любым другим способом) цифровое устройство и попытаться вывести изображение.

Телевизор работает почти также, но там только "1 провод", значит все сигналы соединены вместе, если цвет не так важен, то принцип тот же.

Попробуем вывести изображение и посмотреть на осцилограмму сигнала.
У меня есть готовая тестовая программа для ПЛИС отсюда которая выводит данное изображение:

Рассмотрим осцилограмму. Сверху вниз по порядку идут: Красный, Зелёный, Синий, Горизонтальная синхронизация, Вертикальная синхронизация.

Здесь отображен 1 кадр, можно догадаться как будет выглядеть изображение, т.к. каждая полоса состоит из имульсов (если приблизить там есть зоны где постоянно 1, но не длинной во всю линию), то не будет одноцветных линий. Если разбить сигналы на столбцы, видно что есть линии на которых промежутки только красного либо зелёного цветов.

Используемые мной значения:
Весь кадр (O) - 16.69284 мс
Ширина вертикального синхроимпульса (P) - 64.08 мкс
1 строка (A) - 31.9176 мкс
Ширина горизонтального синхроимпульса (B) - 3.84 мкс
Частота пикселей - 25 МГц

Кабель hdmi vga — это элемент оборудования для соединения современной видео аппаратуры, такой как телевизор или компьютерная система, которые коммутируются относительно друг друга с помощью соединительных проводов. Такие кабели, применяемые для выполнения различных соединений, имеют на своих концах определенные по назначению коннекторы. Каждый разъем имеет свою собственную параметрическую характеристику, которая отвечает за добротность транслируемого сигнала. В этой публикации предлагается к рассмотрению технические параметры кабеля vga hdmi и основные условия правильного подбора высоконадежного передатчика.


Соединение между собой телевизионного приемника, ПК и прочих мультимедийных девайсов осуществляется при помощи соединительных проводов с определенными разъемами на концах

Адаптер HDMI VGA: зачем он нужен

Во первых нужно сразу понять для чего нужен кабель hdmi vga и предназначение его разъемов, и какие функции они выполняют. VGA является аналоговым пятнадцати-пиновым интерфейсом для подключения мониторов к видеотехнике, в основном к персональному компьютеру. Принцип его действия определяется передачей только изображения при отсутствии звука. HDMI, это цифровой универсальный мультимедийный интерфейс, с помощью которого передается звуковой и видео-контент, а также управляющие сигналы высокого качества. Для объединения данных адаптеров в одну цепь потребуется сложный прибор, а именно — конвертер сигналов.

Схема подключения hdmi — vga:

  • Соединительный кабель hdmi vga . Применение кабеля можно осуществлять только тогда, когда монитор или телевизор оборудованы функцией распознавания и регистрации импульсов в аналоговом формате. Так как кабель сам по себе не делает преобразование сигнала.
  • На следующем снимке представлено устройство обеспечивающее соединение с HDMI-портом и переходник на аналоговый формат, который индивидуально соединяется с излучателем импульсов.
  • HDMI-конвертер, это устройство для подключения, преобразования, соединения HDMI сигнала относительно других источников, таких как проекторы, DVD, телевизоры, HD-плеер, персональные компьютеры.
  • Видео-контент и сопровождающий его звук преобразуется в авто-режиме, поэтому какое-либо дополнительное регулирование не нужно.
  • Если же, если монитор обладает модулем конвертирования сигнала, то тогда нужно просто вставить провод hdmi vga напрямую, а конвертирование сигнала будет выполняться в самом встроенном устройстве.

Правильный выбор адаптера hdmi vga

Почти все приборы выполняющие роль переходников, конвертируют звуковой импульс не одинаково. Дело в том, что каждый производитель при изготовлении устройства применяет собственные технологии, отличающиеся от других фирм. Приобретая такое устройство в магазине, внимательно ознакомьтесь с прилагаемым тех-паспортом устройства, где обозначены параметры и характеристики работы данного аппарата.

Помимо внешнего вида конструкции и его технической составляющей, не последнее место определяющее качество, занимает фирма-производитель. Только фирменная сборка оборудования может гарантировать надежность и безопасность в работе. Остерегайтесь подделок и неизвестных производителей вызывающих недоверие.

Компьютеры и ноутбуки уже лет 10 оснащаются не одним, а двумя-тремя видами разъёмов одновременно. Порты отличаются и по размеру, и по внешнему виду. Какой тип подключения монитора предпочесть? В статье также рассматривается практическая полезность одновременного подключения двух, а то и трёх мониторов.

Распространенные, но старые виды разъёмов

VGA (Video Graphics Array): устаревшая классика

Синий трапециевидный интерфейс доминировал в компьютерной сфере лет 25-30. Он великолепно справлялся со старыми ЭЛТ-дисплеями благодаря своей аналоговой природе. Но появились плоские ЖК-экраны – цифровые устройства, затем стали возрастать разрешения и старый-добрый VGA стал сдавать позиции.

Сегодня он всё реже встраивается в видеокарты, но до сих пор многие устройства (бытовые проигрыватели, проекторы, телевизоры) оснащаются поддержкой безнадёжно устаревшего VGA. Вероятно, ещё несколько лет «старичок» останется не слишком желательным, но повсеместно распространённым стандартом де-факто – если есть сомнения, каким кабелем можно будет подключить монитор в соседнем офисе, то берите VGA.

DVI-I (Digital Visual Interface): другой видеоинтерфейс-долгожитель

Вообще-то их несколько: DVI-A, -D и -I, плюс их разновидности. Но когда речь идёт о самом распространённом стандарте «Ди-Ви-Ай», то подразумевается аналогово-цифровой DVI-I Dual Channel – именно эта спецификация встроена в большинство ПК.

В своё время DVI пришёл на замену стремительно устаревающему в середине 2000-х VGA. Возможность передавать как аналоговый, так и цифровой сигнал, поддержка больших (в ту эпоху) разрешений и высоких частот, отсутствие недорогих конкурентов: DVI исправно служит стандартом и в наши дни. Но вряд ли его активная «жизнь» будет продолжаться больше, чем ещё 3-4 года.

Разрешения выше минимально комфортного на сегодня FullHD всё чаще встречаются даже в недорогих компьютерных системах. С ростом мегапикселей заканчиваются и некогда серьёзные возможности DVI. Не вдаваясь в технические подробности, отметим, что пиковые способности DVI не позволят выводить на экран изображение с разрешением свыше 2560 х 1600 с приемлемой частотой (выше 60 Гц).

Современные видеоинтерфейсы

HDMI (High Definition Multimedia Interface) – король мультимедиа

Когда-то несуразная для русского слуха аббревиатура «эйч-ди-эм-ай» всё плотнее входит в нашу жизнь. Почему именно HDMI стал таким популярным? Всё просто:

  • сколь угодно длинные провода (ладно, если честно – до 25-30 метров);
  • передача звука (даже многоканального!) вместе с видео – прощай, необходимость покупать отдельные колонки для ТВ;
  • удобнейшие небольшие коннекторы;
  • поддержка всюду – проигрыватели, «зомбоящики», проекторы, видеорегистраторы, игровые приставки – сложно сходу вспомнить о технике, где не было бы разъёма HDMI;
  • сверхвысокие разрешения;
  • 3D-картинка. И да, можно вместе со сверхвысокими разрешениями (версии HDMI 4b и 2.0).

Перспективы у HDMI самые радужные – развитие продолжается, в 2013 году были приняты спецификации версии 2.0: этот стандарт совместим со старыми проводами-разъёмами, но поддерживает всё более внушительные разрешения и другие «вкусные» возможности.

DisplayPort (DP): разъём, который только становится повсеместным

А ещё DisplayPort потрясающе красив внешне…

Многие годы компьютеры редко оснащались этим прямым конкурентом HDMI. И — несмотря на то, что всем хорош был DisplayPort: и поддержкой очень высоких разрешений вместе со стереосигналом; и передачей аудио; и внушительной длиной провода. Он даже выгоднее производителям, чем лицензируемый HDMI: не нужно выплачивать разработчикам стандарта те 15-25 центов, которые полагаются владельцам HDMI.

Разъёму DP просто не повезло в первые годы существования. Впрочем, компьютеры всё чаще оснащаются сразу парой Display Port современного стандарта версии 1.4. И на его основе «родился» другой популярнейший стандарт с огромными перспективами: «младший брат» Дисплей-порта…

Mini DP (Mini DisplayPort)

Вместе с HDMI и категорически устаревшим VGA, разъём Mini DisplayPort встраивается едва ли не в каждый компьютер и ноутбук. На его стороне все достоинства «старшего брата», плюс миниатюрные размеры – идеальное решение для постоянно утончающихся ноутбуков, ультрабуков, и даже смартфонов с планшетами.

Передача аудиосигнала, чтобы не докупать к монитору отдельные колонки? Пожалуйста – сколько вам каналов? Стереоскопия даже в 4K? Да, пусть интерфейсу и придётся поднапрячь все свои электронные мускулы. Совместимость? Переходники на рынке есть самые разнообразные, едва ли не на любой другой разъём. Будущее? Стандарт Mini DP живёт и развивается.

Thunderbolt: экзотические варианты подключения монитора

Есть и такие. Который уже год фирма Apple вместе с разработчиками Intel продвигают быстрый, универсальный, но безумно дорогой интерфейс Thunderbolt.

Зачем мониторам ещё и Thunderbolt? Вопрос остаётся который год без вразумительного ответа.

На практике мониторы с его поддержкой встречаются не так часто, да и есть большие сомнения в оправданности Thunderbolt для передачи видеосигнала. Разве что мода на всё «яблочное»…

К сожалению, за рамками статьи остаётся интереснейшая возможность подключать экраны к компьютеру (и даже подавать на них электропитание!) при помощи интерфейса USB 3.0 (или, ещё интереснее, 3.1). Перспектив у этой технологии множество, преимущества тоже имеются. Впрочем, это тема отдельного обзора – и ближайшего будущего!

Как подключить новый монитор к старому компьютеру?

Под «старым компьютером» чаще всего подразумевается ПК с единственным портом – VGA или DVI. Если новый монитор (или телевизор) категорически не хотят дружить с таким портом, то следует приобрести сравнительно недорогой переходник – от VGA к HDMI, от Mini DP к DVI и т.д. – вариантов множество.

При использовании переходников возможны некоторые неудобства (например, через VGA никак не передать звук или изображение с особо высоким разрешением), но такая схема будет работать исправно и надёжно.

Видеосигнал без проводов (WiDi)!

Существуют и такие интерфейсы, даже несколько. Intel Wireless Display (он же – WiDi, или «вай-дай», как бы странно ни звучало это для русскоязычного читателя): адаптер ценой около 30 долларов подключается в USB-разъём телевизора или монитора (если технология поддерживается производителем).

Сигнал отправляется через Wi-Fi, на экране – видеоизображение. Но это лишь в теории, а на практике существенными препятствиями являются расстояние и наличие стен между приёмником и передатчиком. Технология интересная, есть у неё и перспективы – но пока не более того.

Другой беспроводной видеоинтерфейс – AirPlay от Apple. Суть и практическое применение такое же, как и у WiDI от Intel. Дороговато, не слишком надёжно, далеко не практично.

Решение более интересное, но пока малораспространённое — Wireless Home Digital Interface (WHDi). Это не совсем Wi-Fi, хотя весьма похожая беспроводная технология. Ключевая особенность – проприетарный способ защиты от помех, задержек и искажений.

Подключение нескольких мониторов одновременно

С задачей присоединения основного или дополнительного экрана справится даже начинающий пользователь: монитор подключается к ПК или ноутбуку не сложнее, чем флешка. Подключить монитор к компьютеру возможно только правильным способом: коннектор попросту не войдёт в разъём, который для него не предназначен.

Отличная функция современных видеокарт и операционных систем – возможность подключения сразу нескольких мониторов к одному источнику сигнала (ПК, ноутбуку). Практическая польза огромная, притом в двух разных вариантах.

1. Режим клонирования изображения

Экран основного компьютера работает в обычном режиме. Но одновременно изображение полностью дублируется на крупнодиагональный телевизор и/или проектор. Достаточно лишь подключить видеокабель и к большому экрану, и к проектору. Звук передаётся вместе с изображением, если использовать современные разъёмы (HDMI, Mini DP).

2. Режим нескольких экранов

Разрешение мониторов постоянно растёт – но всегда найдутся задачи, для которых хотелось бы иметь экран пошире. Расчёты в крупной таблице Excel, или работа сразу с парой браузеров; дизайнерские задачи и редактирование видео. Даже набор текста удобнее, когда рядом с основным есть ещё и дополнительный дисплей. «Промежуток» – рамки экранов на практике мешают не больше, чем оправа очков – через несколько минут их просто не замечаешь. Любят использовать сразу несколько мониторов и геймеры – погружение в игровой процесс при такой схеме захватывает заметно более. Кстати, некоторые видеокарты AMD поддерживают аж до 6 мониторов одновременно (технология Eyefinity наделала в IT-сообществе много шуму ещё лет 5 назад).

Картинка: так можно вызвать настройки подключения второго или третьего монитора: щелчок по «Настройкам графики» от Intel или Nvidia.

Как подключить 2 й монитор к компьютеру? Вставить разъём кабеля – скорее всего, изображение моментально «подхватится» вторым экраном. Если этого не произошло, или требуются дополнительные настройки / другой режим – минутная работа в графическом драйвере видеокарты. Чтобы попасть в эту программу, достаточно щёлкнуть правой кнопкой по значку видеодрайвера Intel, Nvidia или AMD – в зависимости от того, какой видеоадаптер установлен в ПК, и выбрать пункт «Настройка». Иконка видеоадаптера всегда присутствует в Панели управления, и почти во всех случаях – в трее Windows, около часов.

Разъем VGA (сокращение от Video Graphics Array) является популярным стандартом мониторов, разработанный IBM и внедренный в 1987.

Не смотря на то, видео интерфейс VGA, обеспечивающий взаимодействие монитора и графической карты компьютера, разработан более двадцати лет назад, он и по сей день остается самым известным стандартом для графики на IBM совместимых компьютерах. Для этого есть две основные причины для этого:

Во-первых, основной режимы VGA — отображение 80×25 в режиме символов и 640×480 в графическом режиме поддерживается всеми современными графическими картами, независимо от разрешений поддерживаемых этими картами. Поэтому все компьютеры при включении активизируют режим VGA и только после загрузки операционной системы и драйверов видео карты, компьютер переходит в режим повышенной разрешающей способности, которая заложена в конкретной видеокарте.

Во-вторых, несмотря на более высокое разрешение и глубину цвета современных мониторов и графических карт, разъем, используемый на большинстве компьютеров для подключения монитора, все еще имеет стандарт VGA. Поэтому большинство людей будут говорить о мониторе VGA, даже если это XGA, Super VGA или любой другой современный стандарт.

Хотя современные дисплеи высокого разрешения больше ориентированы на современный стандарт, такой как DVI, но все же большинство видеокарт, имеющие более низкое разрешение, до сих пор используют 15 контактный (DB15) разъем VGA, для соединения с монитором.

Распиновка VGA разъема

Расположение выводов разъема интерфейса VGA показано ниже. Первые три вывода предназначены для передачи аналогового сигнала трех основных цветов RGB (1-красный, 2-зеленый и 3-синий). Красные, зеленые и синие сигнальные линии имеют свои собственные минусовые провода (6, 7 и 8). Для горизонтальной и вертикальной синхронизации предназначены выводы 13 и 14 соответственно.

По внешнему виду разъем VGA схож с разъемом COM порта (DB9). Но в отличие от DB9, разъем VGA имеет 15 выводов расположенных в три ряда по 5 контактов в каждом ряду. Помимо сигналов цветопередачи (RGB) и сигналов синхронизации, в разъеме VGA имеется и цифровой интерфейс I2C, предназначенный для двусторонней связи между видео контроллером и монитором. Этот интерфейс (I2C) придает VGA достаточную универсальность.

Следует отметить, что I2C не был реализован в первых версиях стандарта VGA, а был добавлен значительно позже с появлением стандарта VESA DDC2. С помощью интерфейс I2C контроллер и монитор могут обмениваться технической информацией, например, доступность частоты и разрешения, с целью предотвращения несовместимости в работе.